
Evaluating Testing Frameworks for Ethereum
Blockchain Applications: Introducing Wake

Josef Gattermayer, Ph.D.1,2[0009−0008−0293−4209], Michal Převrátil2, and Jan
Kuběna2

1 Czech Technical University in Prague, Faculty of Information Technology, Czech
Republic https://fit.cvut.cz

2 Ackee Blockchain, Czech Republic https://ackeeblockchain.com

Abstract. This paper introduces Wake, a new testing framework for
Ethereum blockchain applications. We present a comparative study of
Wake and established testing frameworks - Brownie, Ape, and Hard-
hat, using Uniswap v3 as a case study. The execution times of 271 test
cases were measured across different combinations of development chains.
Wake consistently outperformed the other testing frameworks, providing
execution speeds 3-10 times faster than its closest competitor.

Keywords: Blockchain · Ethereum · Wake · Brownie · Ape · Hardhat ·
Anvil · Ganache · Uniswap v3.

1 Introduction

Blockchain is a relatively new technology enabling secure, decentralized, peer-
to-peer online transactions. Ethereum[21] is a versatile blockchain platform fa-
cilitating the development of decentralized applications represented by smart
contracts. These contracts, predominantly written in a higher-level language So-
lidity[6], adhere to the principle of ”code is the law.” This principle implies that,
once deployed, the code dictates the contract’s behavior, with no possibility of
third-party intervention (unless mechanisms such as proxies[8] are introduced).
Therefore, quality control of smart contract codes is a priority.

Within Ethereum and blockchain technology, development chains serve as
testing environments. Development chains allow developers to deploy work-in-
progress versions of their smart contracts while testing frameworks enable the
creation of tests against these contracts. These tools are integral to smart con-
tract development and testing, ensuring correct functionality and security before
deployment onto the Ethereum network (Mainnet). Several testing frameworks,
including Brownie[5], Ape[4], and Hardhat[17], are currently prevalent within
the Ethereum development community.

This paper introduces Wake[2][16][15], a new testing framework for Ethereum
blockchain applications. Our study aims to compare Wake with established test-
ing frameworks, using Uniswap v3[3] as a case study. We measured the execution
times of 271 Uniswap test cases using the testing frameworks in combination with
various development chains. This study assesses Wake’s efficiency and determines
if it offers any performance advantages over other testing frameworks.

2 J. Gattermayer et al.

1.1 Ethereum

Ethereum operates on the Ethereum Virtual Machine (EVM), an environment
that executes smart contracts. Transactions change the EVM’s state. All trans-
actions, including those deploying smart contract code, are immutable once con-
firmed, meaning they cannot be altered or undone.

An exception to this immutability is the use of design patterns like proxies,
which introduce a level of upgradability to the contracts[8]. The EVM state is
publicly readable, providing complete transparency of its present and historical
state. The behavior is called ”code is the law”—once a transaction, including
smart contract interactions, is confirmed, it is permanent and cannot be reversed.

Testing on Ethereum is paramount due to unique platform attributes: im-
mutability, transparency, and economic implications. These attributes differ dis-
tinctly from traditional software, where errors can be corrected post-deployment
or malicious transactions can be reverted.

The economic implications underscore the necessity for comprehensive test-
ing. Smart contracts frequently manage, transfer, or lock substantial value. In-
correct code or vulnerabilities can lead to significant financial losses. Recent
attacks underscore these cost implications. One example in 2022 was the Nomad
token bridge exploit[20], where approximately $190 million was drained due to
a smart contract vulnerability failing to validate transaction inputs properly.

Uniswap v3 is a critical part of the Ethereum ecosystem, functioning as a
decentralized trading protocol on the Ethereum blockchain. It facilitates direct,
intermediary-free trading of Ethereum-based ERC20 tokens from user wallets.

Regarding its development infrastructure, Uniswap v3 is an open-source
project with a comprehensive test suite written in TypeScript using the Hardhat
testing framework.

As of May 2023, Uniswap v3 maintains considerable financial metrics: $2.85
billion in total locked value, an annualized volume of $506.8 billion, and annual-
ized fees reaching $725.13 million[7]. Given its substantial scale and importance
within the ecosystem, Uniswap v3 is an ideal case study for the comparative
analysis of testing frameworks presented in this work.

2 Testing Frameworks

Testing frameworks are critical tools in software development, designed to sup-
port the creation and execution of test cases and the evaluation of test results.
They provide a standardized environment where developers can test their soft-
ware’s functionality, performance, and reliability.

Ethereum testing frameworks provide functionalities like simulating transac-
tions, interacting with smart contracts, checking contract states, and creating
local testing blockchain environments (development chains).

Ethereum Testing Frameworks: Introducing Wake 3

This paper focuses on frameworks where tests are written in Python - Wake,
Brownie, Ape. Results are compared with Hardhat, which provides test writing
in TypeScript. Hardhat is a testing framework with a plugin Ethers.js[9]. The
scope of this paper does not allow feature comparison of single frameworks as
we focus only on the core functionality of running unit tests that support all the
frameworks.

2.1 Development Chains

Development chains are pivotal components in the Ethereum development ecosys-
tem. These local environments mimic the behavior of the Ethereum network, al-
lowing developers to deploy and interact with smart contracts, send transactions,
and check states, all within an isolated environment.

Development chains offer additional functionalities than public chains[14]
(mainnets and testnets). These functionalities include sending unsigned trans-
actions, changing the nonce of a given address, or temporarily suspending block
mining. Furthermore, methods are available to obtain debugging information
about individual transactions. These differences are useful for testing smart con-
tracts due to their performance (test execution speed) and debugging capabili-
ties.

The Anvil development chain is part of the Foundry[18] project. It is written
in Rust, which can bring significant performance benefits. It implements all the
necessary methods for debugging transactions, changing chain parameters, and
operating with the chain.

Hardhat is a development chain written in Typescript. It implements almost
the same set of methods as Anvil, making it very convenient to interact with.

Ganache is another development chain in the Ethereum ecosystem. Unlike
Anvil and Hardhat, it offers fewer functionalities, affecting the functionalities
offered by testing frameworks built on top of Ganache.

3 Wake Testing Framework

Wake is a new open-sourced Ethereum testing framework developed by Ackee
Blockchain. This section presents the architecture, usage, and motivations be-
hind the creation of Wake.

3.1 Motivation

The motivation behind the development of Wake is to create an all-in-one Python-
based Swiss knife tool for smart contract development, testing, and auditing.
The testing framework is the first part of this path. Wake provides an internal
representation of smart contracts using Python’s native data types.

Utilizing a Python-native data model in Wake offers significant advantages,
mainly its inherent extensibility. Extended functionality offers Language Server

4 J. Gattermayer et al.

Protocol (LSP)[19] for Integrated Development Environments (IDEs)[19], fuzz
testing[12] techniques, and test code coverage analysis[13].

Wake’s priority is the speed of test execution. Wake’s intended deployment
is within Continuous Integration/Continuous Delivery (CI/CD)[11] pipelines,
making it an ideal tool for projects with complex test suites.

3.2 Architecture

The Intermediate Representation (IR) model is at the heart of the Wake archi-
tecture, as it is constructed based on the Abstract Syntax Tree (AST) generated
by the Solidity compiler, solc3. This model conforms to the AST’s node types
and structural elements and is crucial for several components of Wake, including
the language server, testing framework, and static analysis[10].

The IR model merges the outputs of the compiler into a single model, which
allows for a high degree of parallelization in the compilation process. Addition-
ally, the model enables incremental compilation, where only modified files must
be recompiled, and the results are integrated into the unified model. The IR
model also corrects errors and inconsistencies in the AST in different compiler
versions, ensuring consistency and reliability.

The IR model is stored in a binary file format using the standard Python
module Pickle4, which allows fast loading from disk.

After compilation and creation of the IR model, the Wake testing framework
generates pytypes, which are Python files containing the definitions of contracts,
enums, and structs in native Python objects such as classes, data classes, or In-
tEnums. These pytypes files are divided into directories/modules corresponding
to Solidity’s original source files’ directory hierarchy. The framework generates
methods corresponding to the public interface of the given contract, allowing for
easy testing and interaction with the contracts on the chain.

Using pytypes provides several testing benefits, including auto-completion
and type-checking when writing tests. Additionally, pytypes allow deploying con-
tracts and calling their methods, making testing and interacting with contracts
easy to use.

3.3 Usage

Interaction with contracts in the Wake framework is accomplished through low-
level methods or the methods generated in ‘pytypes‘. Four low-level methods
represent different requests: ‘tx‘, ‘call‘, ‘estimate‘, and ‘access list‘. The ‘.trans-
act()‘, ‘.call()‘, ‘.estimate()‘, and ‘.access list()‘ methods correspond to these
request types, respectively.

The ‘pytypes‘-generated methods default to ‘tx‘ for non-pure non-view func-
tions and ‘call‘ for pure and view functions, but the request type can be modified.

3 https://docs.soliditylang.org/en/latest/installing-solidity.html
4 https://docs.python.org/3/library/pickle.html

Ethereum Testing Frameworks: Introducing Wake 5

Low-level methods and ‘pytypes‘-generated methods accept common keyword
arguments to all request types. These arguments can be used to modify specific
parameters of transactions and requests sent in the testing framework, such as
the sender address (‘from ‘), the value sent along with the transaction (‘value‘),
the gas limit (‘gas limit‘), the gas price (‘gas price‘), the maximum fee per gas
(‘max fee per gas‘), the maximum priority fee per gas (‘max priority fee per gas‘),
the access list (‘access list‘), and the request type (‘type‘).

After a transaction is sent, the testing framework returns a transaction object
that provides access to attributes such as call traces, events, and console logs,
even in the case of a transaction failure. The framework offers advanced features,
such as the ability to attach a debugger in the case of a transaction revert. The
debugger allows developers to inspect Python objects within the script and con-
tracts on the chain by invoking ‘pytypes‘ or low-level functions. The framework
also provides helper functions for ABI5 encoding and decoding, creating and
restoring chain snapshots, and native support for cross-chain testing without
context switching using context blocks. Furthermore, the framework allows So-
lidity code coverage analysis of selected test scripts, although performance may
be reduced.

4 Methodology

Performance evaluation was chosen as the primary metric for this study. A test-
ing framework’s performance can indicate its internal design efficiency and influ-
ence its adoption by developers and integration in CI/CD pipelines. Slow testing
frameworks limit users, potentially leading to test skips or size reduction, un-
dermining blockchain safety and stability.

4.1 Test Suite

A subset of the original Uniswap v3 Hardhat TypeScript tests was rewritten
into Python, then further adapted to be compatible with each Python frame-
work under consideration. The adapted test suite included 271 test cases and
parameterized tests [1].

Adjustments6 to the Brownie framework were required for its compatibility
with Anvil, as Brownie does not natively support the --block-base-fee-per-gas
option. Without this option, tests would fail. To avoid Anvil logging approxi-
mately 15 GB of data per test, we added the prune-history 100 option.

4.2 Measurement Process

The test execution process was automated to ensure consistency[1]. Initially, a
framework-specific compile command was executed, followed by a single ’dummy’

5 https://docs.soliditylang.org/en/develop/abi-spec.html
6 https://github.com/Ackee-Blockchain/Wake-measurements/blob/brownie/network/rpc/anvil.py

6 J. Gattermayer et al.

test run not included in the recorded execution times to mitigate potential
caching effects.

Each framework and development chain combination was run ten times con-
secutively. The average execution time was calculated. The execution time was
determined by the time command as the ’real’ output time.

All Python frameworks were set up within virtual environments using pack-
ages specified in their requirements files. For Hardhat, the required packages
were installed from the packages.json file.

Tests were conducted on a VM n2d-standard-4 instance in Google Cloud,
equipped with four cores of AMD Rome, 16 GB RAM, and an HDD disk. The
system ran a Debian OS with kernel version 5.10.162-1 and Python 3.10.11.
All tests were executed under similar load conditions on the virtual machine.

5 Results and Discussion

The data collected from test suite executions are displayed in Table 1. It shows
Wake framework’s leading performance, being 3.3x faster on the Anvil devel-
opment chain than any other framework combination. Tests were executed and
measured 200 times.

Table 1. Average execution times of the test suite for different testing frameworks
(columns) and development chains (rows). Results in seconds are shown as: mean (stan-
dard deviation)

Brownie [s] Ape [s] Wake [s] Hardhat
Ethers.js [s]

Anvil 34.80 (1.31) 53.27 (1.22) 3.37 (0.05) 10.96 (0.40)

Ganache 51.48 (1.41) 72.72 (2.09) 15.78 (0.22) 118.71 (1.69)

Hardhat 51.62 (2.43) 72.42 (1.80) 19.69 (0.15) 17.47 (0.17)

6 Conclusion

The present study introducedWake, a new testing framework featuring a Python-
native data model and Intermediate Representation architecture. Through per-
formance measurements against established frameworks Brownie, Ape, and Hard-
hat with Ethers.js on different development chains (Anvil, Ganache, Hardhat),
Wake demonstrated performance gains in executing test suites, mainly when
used with Anvil. Key performance attributes of Wake, such as high degrees
of parallelization during compilation and incremental compilation, significantly
contributed to these efficiencies.

Our findings also highlight the significant impact of development chains on
the performance of a testing framework. Notably, Ganache consistently under-
performed relative to Anvil and Hardhat across all testing frameworks evaluated.

Ethereum Testing Frameworks: Introducing Wake 7

Future work will leverage Wake’s intermediate representation model architec-
ture to incorporate additional features, including a static analysis, fuzz testing,
and a test coverage visualization.

References

1. Ackee Blockchain: Github repository, https://github.com/Ackee-
Blockchain/python-testing-frameworks-benchmark/blob/master/test/ projects.py,
Last accessed 2023-05-19

2. Ackee Blockchain: Wake documentation, https://ackeeblockchain.com/wake/docs/latest/,
Last accessed 2023-05-19

3. Adams, H., Zinsmeister, N., Salem, M., Keefer, R., Robinson, D.: Uniswap v3 core.
Tech. rep., Uniswap, Tech. Rep. (2021)

4. ApeWorx LTD: Ape homepage, https://www.apeworx.io/, Last accessed 2023-05-
19

5. Brownie: https://eth-brownie.readthedocs.io/en/stable/, Last accessed 2023-05-19
6. Dannen, C.: Introducing Ethereum and solidity, vol. 1. Springer (2017)
7. DefiLlama: https://defillama.com/protocol/uniswap-v3, Last accessed 2023-05-19
8. Ethereum Foundation: https://ethereum.org/en/developers/docs/smart-

contracts/upgrading/#proxy-patterns, Last accessed 2023-05-19
9. Ethers: Ether.js documentation, https://docs.ethers.org/v5/, Last accessed 2023-

05-19
10. Feist, J., Grieco, G., Groce, A.: Slither: a static analysis framework for smart

contracts. In: 2019 IEEE/ACM 2nd International Workshop on Emerging Trends
in Software Engineering for Blockchain (WETSEB). pp. 8–15. IEEE (2019)

11. Fowler, M., Foemmel, M.: Continuous integration (2006)
12. Grieco, G., Song, W., Cygan, A., Feist, J., Groce, A.: Echidna: effective, usable,

and fast fuzzing for smart contracts. In: Proceedings of the 29th ACM SIGSOFT
International Symposium on Software Testing and Analysis. pp. 557–560 (2020)

13. Ivanković, M., Petrović, G., Just, R., Fraser, G.: Code coverage at google. In: Pro-
ceedings of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. pp. 955–
963 (2019)

14. Iyer, K., Dannen, C., Iyer, K., Dannen, C.: The ethereum development environ-
ment. Building Games with Ethereum Smart Contracts: Intermediate Projects for
Solidity Developers pp. 19–36 (2018)

15. Jan, K.: Rozš́ı̌reńı nástroje Woke. Master’s thesis, České vysoké učeńı technické v
Praze. Vypočetńı a informačńı centrum. (2023)

16. Michal, P.: Rozš́ı̌reńı nástroje Woke. Master’s thesis, České vysoké učeńı technické
v Praze. Vypočetńı a informačńı centrum. (2022)

17. Nomic Foundation: Hardhat homepage, https://hardhat.org/, Last accessed 2023-
05-19

18. Paradigm: Foundry homepage, https://getfoundry.sh/, Last accessed 2023-05-19
19. Rodriguez-Echeverria, R., Izquierdo, J.L.C., Wimmer, M., Cabot, J.: Towards a

language server protocol infrastructure for graphical modeling. In: Proceedings
of the 21th ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems. pp. 370–380 (2018)

20. Scharfman, J.: Decentralized finance (defi) fraud and hacks: Part 2. In: The Cryp-
tocurrency and Digital Asset Fraud Casebook, pp. 97–110. Springer (2023)

21. Wood, G., et al.: Ethereum: A secure decentralised generalised transaction ledger.
Ethereum project yellow paper 151(2014), 1–32 (2014)

